Detailed Project Report On Waste heat recovery in kiln

Jagdamba Ceramic Works Thangadh (Gujarat)

Prepared for Bureau of Energy Efficiency (13/GEF-UNIDO-BEE/LSP/14/4562)

...towards global sustainable development

©Bureau of Energy Efficiency, 2018

This DPR has been originally prepared by TERI as a part of 'Capacity Building of LSPs' activity under the GEF-UNIDO-BEE project 'Promoting Energy Efficiency and Renewable Energy in selected MSME clusters in India'.

Suggested Format for Citation

This document may be reproduced in whole or in part and in any form for educational and non-profit purposes without special permission, provided acknowledgement of the source is made. BEE and TERI would appreciate receiving a copy of any publication that uses this document as a source. A suggested format for citation may be as below:

GEF-UNIDO-BEE Project, Bureau of Energy Efficiency, 2018 "Capacity Building of Local Service Providers"

For more information

GEF-UNIDO-BEE PMU Bureau of Energy Efficiency 4th Floor, Sewa Bhawan, Sector-1, R.K. Puram, New Delhi-110066 Email: gubpmu@beenet.in pmc@teri.res.in Website: www.beeindia.gov.in www.teriin.org

Disclaimer

This document is an output of an exercise undertaken by TERI under the GEF-UNIDO-BEE project's initiative for the benefit of MSME units and is primarily intended to assist the decision making by the management of the intended unit for the proposed technology. While every effort has been made to avoid any mistakes or omissions, GEF, UNIDO, BEE or TERI would not be in any way liable to any person or unit or other entity by reason of any mistake/omission in the document or any decision made upon relying on this document.

Acknowledgement

The Energy and Resources Institute (TERI) places on record its sincere thanks to Global Environment Facility (GEF), United Nations Industrial Development Organization (UNIDO) and Bureau of Energy Efficiency (BEE) for giving opportunity to partner in this prestigious assignment on Capacity Building of Local Service Providers (LSPs) under the GEF-UNIDO-BEE project 'Promoting energy efficiency and renewable energy in selected MSME clusters in India'.

TERI is particularly grateful to Mr Milind Deore, Director, Bureau of Energy Efficiency, Mr Sanjay Shrestha, Industrial Development Officer, Industrial Energy Efficiency Unit, Energy and Climate Branch, UNIDO, Mr Suresh Kennit, National Project Coordinator, UNIDO, Mr Niranjan Rao Deevela, National Technology Coordinator, Mr P. Vora, Cluster Leader, Thangadh Foundry Cluster, UNIDO, Mr. Darshan S Naraina, M/s Jagdamba Ceramic works and Panchal Ceramic Association Vikas Trust for their support and guidance during the project.

Last but not least, the interactions and deliberations with numerous foundry units, industry associations, technology providers and who were directly or indirectly involved throughout the study were exemplary and the whole exercise was thoroughly a rewarding experience for TERI.

The Energy and Resources Institute (TERI) New Delhi

Table of contents

ACKNOWLEDGEMENT	1
List of tables	1
List of figures	1
LIST OF ABBREVIATIONS	1
EXECUTIVE SUMMARY	I
1.0 DETAILS OF THE UNIT	1
1.1 Particulars of unit	1
2.0 ENERGY PROFILE.	3
2.1 Process flow diagram	3
2.2 Details of technology identified	3
2.3 Energy used and brief description of their usage pattern	4
2.4 Energy sources, availability & tariff details	4
2.5 Analysis of electricity consumption	4
2.6 Analysis of other energy forms/ fuels	5
3.0 PROPOSED TECHNOLOGY FOR ENERGY EFFICIENCY	7
3.1 Heat pipe based waste heat recovery system in kiln	7
3.1.1 Background	7
3.1.2 Observations and analysis	7
3.1.3 Recommendation	9
3.2 Cost benefit analysis	9
3.3 Pre-training requirements	
3.4 Process down time for implementation	
3.4 Process down time for implementation3.5 Environmental benefits	
-	10 11
3.5 Environmental benefits	10 11 11
3.5 Environmental benefits 3.5.1 CO ₂ reduction	
 3.5 Environmental benefits 3.5.1 CO₂ reduction 3.5.2 Reduction in other pollution parameters (gas, liquid and solid) 	
 3.5 Environmental benefits	10 11 11 11 11 13 13 13 13 13 13 13
 3.5 Environmental benefits	10 11 11 11 11 13 13 13 13 13 13 13 13 13
 3.5 Environmental benefits	10 11 11 11 11 13 13 13 13 13 13 13 13 13
 3.5 Environmental benefits	10 11 11 11 11 13 13 13 13 13 13 13 13 13

5.0	CONCLUSIONS & RECOMMENDATIONS	
	5.1 List of energy conservation measures	17
	5.2 Summary of the project	
	5.3 Recommendations	
6.0	FINANCING SCHEMES FOR EE INVESTMENTS FOR MSME SECTOR	

Annexures	
ANNEXURE 1: BUDGETARY OFFERS / QUOTATIONS	
Quotation – 1: Econotherm	
ANNEXURE 2: INSTRUMENTS USED	

List of tables

Table 1.1: Particulars of the unit	1
Table 2.2 Details of exhaust system	3
Table 2.3: Energy used and description of use	4
Table 2.4: Energy sources, availability and tariffs	4
Table 2.5: Electricity consumption profile	4
Table 2.6: Analysis of other energy/ fuel consumption	5
Table 3.1.1: Details of exhaust system	7
Table 3.1.2: Heat loss from the waste gases for tunnel kiln	8
Table 3.2: Cost benefit analysis for recommended energy savings measures	9
Table 4.1.1: Particulars of machinery proposed for the project	13
Table 4.1.2: Means of finance	13
Table 4.2.1: Assumptions made	13
Table 4.2.2: Payback	14
Table 4.2.3a: NPV and IRR (100% equity)	14
Table 4.2.3b: NPV and IRR (D/E- 70:30)	15
Table 4.2.3c: NPV and IRR (D/E- 50:50)	15
Table 4.3: Marketing & selling arrangements	15
Table 4.4: Risk analysis and mitigation	16
Table 4.5: Sensitivity analysis	16
Table 5.1: summary of the energy conservation measures	17
Table 5.2: Summary of the project	17
Table 6.1: Major government schemes	19
Table 6.2: BEE's VCFEE and PRGFEE scheme	
Table 6.3: IREDA's financing guidelines	21
Table 6.4: Major EE financing schemes/initiatives of SIDBI	22
Table 6.5: JBIC-SBI Green Line	23
Table 6.6: Canara bank scheme of EE SME loans	24

List of figures

Figure 2.1:	Process flow chart	3
Figure 2.6:	Percentage share of various fuel types in the unit	5
Figure 3.1.2:	Heat exchanger	8

List of abbreviations

BEE	:	Bureau of Energy Efficiency
CO ₂	:	Carbon Dioxide
D/E	:	Debt / Equity
DPR	:	Detailed Project Report
DSCR	:	Debt Service Coverage Ratio
EE	:	Energy Efficient
GEF	:	Global Environmental Facility
GHG	:	Green House Gas
HSD	:	High Speed Diesel
IDC	:	Investment without interest defer credit
IGBT	:	Insulated-gate Bipolar Transistor
IGDPR	:	Investment Grade Detailed Project Report
IRR	:	Internal Rate of Return
kW	:	Kilo Watt
kWh	:	Kilo Watt Hour
LSPs	:	Local Service Providers
MSME	:	Micro, Small and Medium Enterprises
MT	:	Metric Tonne
NG	:	Natural Gas
NPV	:	Net Present Value
O&M	:	Operation and Maintenance
РСВ	:	Pollution control board
RE	:	Renewable Energy
ROI	:	Return On Investment
SCM		Standard Cubic Meter
SME	:	Small and Medium Enterprises
SPP	:	Simple Payback Period
TERI	:	The Energy and Resources Institute
Тое	:	Tonnes of oil equivalent
UNIDO	:	United Nations Industrial Development Organization
WACC	:	Weighted Average Cost of Capital

Executive summary

The overall aim of the GEF-UNIDO-BEE project 'Promoting Energy Efficiency (EE) and Renewable Energy (RE) in selected MSME clusters in India' is to develop and promote a market environment for introducing energy efficiency and enhancing the use of renewable energy technologies in process applications in selected energy-intensive MSME clusters in India. This would help in improving the productivity and competitiveness of the MSME units, as well as in reducing the overall carbon emissions and improving the local environment.

Under the GEF-UNIDO-BEE Project, TERI has been entrusted to undertake Capacity building of Local Service Providers (LSPs) to BEE. The Scope of Work under the project

- Organizing 4 one-day training/ capacity building workshops for LSPs in each cluster.
- Development of 10 bankable DPRs for each cluster, based on mapping technology needs with capacities of local technology suppliers/service providers, and also replication potential and applications to banks in each cluster.

Name of the unit	M/s Jagdamba Ceramic Works
Constitution	Partnership
MSME Classification	Small
No. of years in operation	2
Address: Registered Office:	Thangadh, Surendra Nagar, Thangadh - 363530, Gujarat,
Industry-sector	Sanitary ware (Ceramic)
Products manufactured	Ceramic Pedestal Wash Basins, Ceramic Wash Basins,
	Ceramic Water Closets, Ceramic Urinals, Ceramic
	Bidets, Ceramic Shower Trays, Squatting Pan etc.
Name(s) of the promoters/ directors	Mr. Darshan S Naraina
	Mr. Sanjay V Naraina
Existing banking arrangements along	Bank of India
with the details of facilities availed	

Brief introduction of the MSME unit

Brief highlights of the past financial position of the MSME unit

		(Rs lakh)
		FY 2017-18
S. No	Particulars	(Audited)
1	Total income	322
2	Net profit	Under depreciations

A detailed assessment study was undertaken in the identified area with the use of the sophisticated handheld instruments. Energy consumption pattern and production data were collected to estimate the specific energy consumption of the unit. The plant is consuming about 3,73,848 kWh of electricity per year. The annual consumption of the HSD is 2,800 litres and natural gas is 4,72,500 SCM. The total energy consumption of the unit during last 12 months is estimated to be 456.9 toe which is equivalent to 159.21 lakh rupees. The total CO₂

emission during this period is estimated to be 1,141 tonnes. Electricity, HSD and NG were considered for CO_2 emission estimation.

The unit manufactures the ceramic pedestal wash basins, ceramic wash basins, ceramic water closets, ceramic urinals, ceramic bidets, ceramic shower trays, and squatting pan etc. The total annual production of the unit during 2017-18 is estimated to be about 3,85,000 pieces. The major source of energy is natural gas, consume in the kiln and electricity consume in utilities and lighting.

Accepted/ recommended technology implementation

The recommended technology considered after discussion with the plant personnel for implementation in the unit is given below.

S. No	Energy conservation measure	Annual energy saving NG (SCM)	Investment ¹ (Rs. Lakh)	Monetary savings (Rs. Lakh per year)	Simple payback period (Yrs)	Emission reduction (tonnes of CO ₂)
1	Heat pipe based waste heat recovery system in kiln	33,075	20.47	9.26	2.2	57.9

Other benefits

- The proposed project is not expected to bring in any change in process step or operating practices therefore no change expected in the product quality.
- Implementation of the selected technology in the unit may result in reduction in CO₂ emissions.

Cost of project & means of finance

S. No.	Particulars	Unit	100% equity	D/E- 70:30	D/E- 50:50
1	Cost of Project	Rs. In Lakh	20.47	20.47	20.47
2	D/E Ratio	-	-	7:3	1:1
3	Project IRR	%	22.0	17.5	18.8
4	NPV	Rs. In Lakh	6.3	3.6	4.4
5	DSCR	-	-	2.1	0.9

¹ Investment including the (i) heat pipe based heat exchanger – Rs. 17.8 lakh, and (ii) fabrication and other misc. cost – Rs. 2.67 lakh

1.0 Details of the unit

1.1 Particulars of unit

Table 1.1: Particulars of the unit

Owned
Twped
Twped
Dwned
Twinod
Twned
Twned
Jwneu
Owned
r of
ramic
al,

2.0 Energy profile

2.1 Process flow diagram

Manufacturing of ceramic item uses wide range of raw material combination to produce different shape, size and colour. It requires both electrical and thermal energy at different stages of the process to operate the ball mill, casting/moulding, kilns, cutting & finishing machines and utilities such as motors, pumps air compressor etc. Ceramic manufacturing process primarily consists of mould preparation, body material preparation, shaping, drying and firing. Typical process flow chart is shown with figure 2.1.

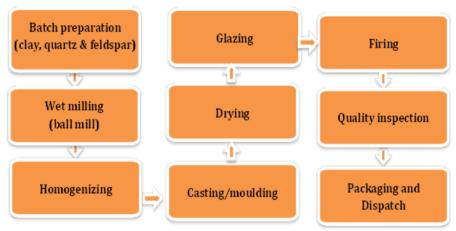


Figure 2.1: Process flow chart

2.2 Details of technology identified

The details of the exhaust system of the tunnel kiln installed in the unit are given in table 2.2.

Parameter	Value
Type of kiln	Tunnel kiln
Maximum temperature of combustion zone	1,200 °C
Stack Details	• Natural Draft,
	• 12 inch Diameter,
	• FD 5 hp X 2
	Damper control
Type of fuel	Natural Gas
Exhaust temperature	215-230 °С
Minimum recommended exhaust temperature	130 °C
Fuel Consumption rate	50-60 SCM per hour
Burner details	14 burners
	(total gas consumption 1,350 SCM per day)
Operating Period	24 hours per day

2.3 Energy used and brief description of their usage pattern

The unit uses grid power supplied by Paschim Gujarat Vij Company Ltd. (PGVCL) under the tariff category HTP -1. Table 2.3 provides the details of energy uses.

S No	Energy source	Description of use
1	Electricity	Motive power for different drives in different process sections and utilities
2	NG	Kiln
3	HSD	For diesel generator (backup power during power cuts)

Table 2.3: Energy used and description of use

2.4 Energy sources, availability & tariff details

Different energy sources, availability of listed energy types and their respective tariffs are given in table 2.4.

Particular	HTP-1			
Supplied by	Demand charges:			
PGVCL	 For first 500 kVA of billing demand: Rs. 150/- per kVA per month 			
Connection	 For next 500 kVA of billing demand: Rs. 260/- per kVA per month 			
category: HTP – 1	Energy charges: 420 paise per unit			
	Penalty:			
	 1% of energy charges for every point drop in PF between 0.85 to 0.90 			
	 2% of energy charges for every point drop in PF below 0.85 			
	Rebate			
	0.5% of energy charges for every point increase in PF over 0.95			
	TOU Pricing: For energy consumption during the two peak periods, viz., 0700			
	Hrs to 1100 Hrs and 1800 Hrs to 2200 Hrs			
	 For Billing Demand up to 500kVA: 35 Paise per unit 			
	 For Billing Demand above 500kVA: 75 Paise per unit. 			

Table 2.4: Energy sources, availability and tariffs

2.5 Analysis of electricity consumption

 Table 2.5:
 Electricity consumption profile

Month & Year	Total electricity consumption (kWh)	Sanctioned load/demand (kW)	Power factor	Recorded demand, kVA	Demand charges (Rs)	Energy charges (Rs)	Monthly bill (Rs)
Oct-17	31,154	100	0.91	103	14,795	1,43,308	2,10,284

The annual electricity consumption of the unit from the grid of Paschim Gujarat Vij Company Ltd under the tariff category HTP-1 is estimated to be 3,73,848 kWh per year (based on the information provided by plant). The average electricity price is Rs. 6.75 per kWh.

2.6 Analysis of other energy forms/ fuels

The analysis of the other fuels/forms of energy used in the unit is given in table 2.6.

Tuble 2007 fillary bib of other energy/ fuer consumption					
Parameters	NG (SCM)	HSD (Litre)			
Consumption unit/year	4,72,500	2,800			
Calorific value per unit	8,935	9,202			
Equivalent toe per year	422.2	2.6			
Price (Rs per unit)	28.0	60.0			
Total price per year	1,32,30,000	1,68,000			

 Table 2.6: Analysis of other energy/ fuel consumption

The share of various energy forms used in the unit is given in figure 2.6.

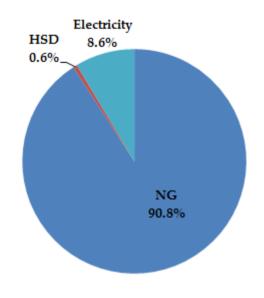


Figure 2.6: Percentage share of various fuel types in the unit

The plant is consuming about 3,73,848 kWh of electricity per year. The annual consumption of the HSD is 2,800 litres and natural gas is 4,72,500 SCM. The total energy consumption of the unit during last 12 months is estimated to be 456.9 toe which is equivalent to 159.21 lakh rupees. The total CO_2 emission during this period is estimated to be 1,141 tonnes. Electricity, HSD and NG were considered for CO_2 emission estimation.

3.0 Proposed technology for energy efficiency

Based on the measurements, observations/ findings during detailed assessment study conducted in the unit, the following technology has been identified for energy efficiency improvement. The detail is given below.

3.1 Heat pipe based waste heat recovery system in kiln

3.1.1 Background

Kilns are important segment in sanitary manufacturing process and accounting for more than 80% of energy consumption. Various operating parameters such as temperatures, draft, retention time and material arrangement, etc. may vary with the type of kilns used. More the air is used to burn the fuel, more is the heat wasted in heating air. The details of the exhaust system of the tunnel kiln installed in the unit are given in table 3.1.1.

Parameter	Value
Type of kiln	Tunnel kiln
Maximum temperature of combustion zone	1,200 °C
Stack Details	• Natural Draft,
	• 12 inch Diameter,
	• FD 5 hp X 2
	Damper control
Type of fuel	Natural Gas
Exhaust temperature	215-230 °С
Minimum recommended exhaust temperature	130 °C
Fuel Consumption rate	50-60 SCM per hour
Burner details	14 burners
	(total gas consumption 1,350 SCM per day)
Operating Period	24 hours per day

Table 3.1.1: Details of exhaust system

The operational parameters including the electricity consumption and material loaded were measured during the detailed assessment study.

3.1.2 Observations and analysis

Firing is a major process of ceramic production in the kiln. There is continuous process of production in tunnel kiln in ceramic production, of which the thermal efficiency is relatively low. Besides combustion losses due to improper air to fuel ratio control mechanism, the most important heat loss is the exhaust losses. The exhaust temperature of the flue gases (waste gases) has been recorded to be 243.8 °C. Firing tunnel kiln emissions of heat loss is estimated to be about 13% (at exhaust from precooling zone) of the total calories input. The heat loss from the waste gases for tunnel kiln is shown in table 3.1.2.

Operating Parameters	Unit	Value
Fuel	_	PNG
Fuel CV	kCal/kg	8,935
Average gas consumption	SCM/Hour	56.3
Operating parameters		
O ₂ % in flue gas	%	8.1
Flue Gas Temperature	°C	243.8
CO2% in flue gas	%	7.3
Ambient air Conditions	-	
DBT	°C	34.7
RH	%	56.5
WBT	°C	27.2
Specific Humidity	kg/kg of air	0.02
Fuel Analysis		
Carbon	%	74.7
Hydrogen	%	25.0
Sulphur	%	-
Oxygen	%	-
Nitrogen	%	0.8
Moisture	%	-
Ash	%	-
Total	%	100.5
Combustion air analysis		
Theo. Air required	kg/kg of fuel	17.37
% Excess air	%	62.79
Total air supplied	kg/kg of fuel	28.27
Excess air quantity	kg/kg of fuel	10.90
Flue Gas Constituents		
H2O formation due to H_2 in fuel	kg	2.25
H2O from moisture in fuel	Kg	-
H2O from moisture in air	kg	0.56
N2 in air supplied	kg	21.71
O2 in excess air	kg	2.53
Total flue gas generated	kg	27.05
Total DFG generated	kg	24.24
Energy saving analysis		
Dry flue gas losses	kCal/SCM	1,165.8
Percentage heat loss in waste gases	%	13.0

Table 3.1.2: Heat loss from the waste gases for tunnel kiln

The total heat loss in waste gases of the tunnel kiln is estimated to be approximate 13% of the total heat input to the kiln. Therefore recovery of the kiln backend emission of heat is the key to improve the efficiency of the kiln. Using heat pipe heat exchanger to recycle waste heat in the smoke and gas to heat air as heat source for drying blank pieces or use as combustion air can get good energy-saving efficiency. According to the needs of unit, waste heat recovery

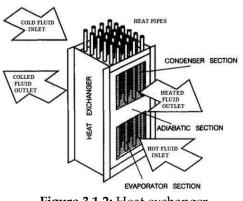


Figure 3.1.2: Heat exchanger

can be used to heat the combustion air which not only reduces the kiln exhaust temperature, but also saves fuel for drying application within the kiln.

3.1.3 Recommendation

It is recommended to retrofit the heat pipe based waste heat recovery system to generate hot air from the cooling zones of tunnel kilns is usually used in the drying stage, and added to the hot air from gas burners. A large amount of energy is saved using this innovative technique of heat recovery. Waste heat recovery using heat pipe based heat exchangers has been conducted in many industrial sectors but not the ceramic tile sector.

The use of heat pipe in waste heat recovery delivers many advantages. The design of the heat pipe ensures no cross contamination between the exhaust air and the air supply. The effectiveness of a heat pipe based heat exchanger is higher than for a conventional heat exchanger. The heat pipe system tends to be more compact, with fewer mechanical parts and minimal pressure drops. Such a system ensures a complete separation between the hot and cold flows and a high reliability, with minimal need for maintenance.

3.2 Cost benefit analysis

The estimated saving in annual operation cost by retrofit the heat pipe based waste heat recovery system is Rs. 1.4 lakhs for three operating ball mills. The investment requirement is Rs 2.3 lakh with a simple payback period of 1.7 years. The detailed calculations of the recommended energy conservation measures for DPR are provided in table 3.2.

	<i>y</i> 0 <i>y</i>	8	
Operating Parameters		Existing	Proposed
Fuel		PNG	PNG
Fuel CV	kCal/kg	8,935	8,935
Average gas consumption	SCM/Hour	56.3	52.3
Operating parameters			
$O_2\%$ in flue gas	%	8.1	8.1
Flue Gas Temperature	°C	243.8	135.0
CO2% in flue gas	%	7.3	7.3
Ambient air Conditions			
DBT	°C	34.7	34.7
RH	%	56.5	56.5
WBT	°C	27.2	27.2
Specific Humidity	kg/kg of air	0.02	0.02
Fuel Analysis			
Carbon	%	74.7	74.7
Hydrogen	%	25.0	25.0
Sulphur	%	-	-
Oxygen	%	-	-
Nitrogen	%	0.8	0.8
Moisture	%	-	-
Ash	%	-	-
Total	%	100.5	100.5
Combustion air analysis			
Theo. Air required	kg/kg of fuel	17.37	17.37

Table 3.2: Cost benefit analysis for recommended energy savings measures

DPR - Waste heat recovery in kiln (Jagdamba Ceramic Works)

Operating Parameters			Existing	Proposed
% Excess air	%		62.79	62.79
Total air supplied	kg/kg of fuel		28.27	28.27
Excess air quantity	kg/kg of fuel		10.90	10.90
Flue Gas Constituents				
H2O formation due to H_2 in fuel	kg		2.25	2.25
H2O from moisture in fuel	Kg		-	-
H2O from moisture in air	kg		0.56	0.56
N2 in air supplied	kg		21.71	21.71
O2 in excess air	kg		2.53	2.53
Total flue gas generated	kg		27.05	27.05
Total DFG generated	kg		24.24	24.24
Energy saving analysis				
Dry flue gas losses	kCal/SCM			559.2
		1,165.8		
Percentage heat loss in waste gases	%		13.0	6.0
Reduction in heat loss in waste gases	%		-	7.0
Reduction in fuel consumption	SCM/hour		-	3.94
Annual reduction in gas consumption	SCM/Year		-	33,075
Annual monetary benefits (@ Rs 28	Rs/year		-	9,26,100
per SCM)				
Investment towards heat pipe based	Rs		-	17,80,000
heat exchanger (UK Pound 20,000 @				
Rs 89 per pound))				
Other fabrication & Misc. charges @	Rs		-	2,67,000
15 %				
Total investment ²	Rs		-	20,47,000
Simple payback period	Years		-	2.2

3.3 Pre-training requirements

The training would be required on best operating and maintenance practices for new WHR system.

3.4 Process down time for implementation

The estimated process down time required for implementation of recommended measure is estimated to be 7 days.

² Quotation – 1 has been considered for financial calculation

3.5 Environmental benefits

3.5.1 CO₂ reduction³

Implementation of the selected energy conservation measures in the unit may result in reduction in CO_2 emissions due to reduction in overall energy consumption. The estimated reduction in GHG emission by implementation of the recommended energy conservation measures is 57.9 tonne of CO_2 per year.

3.5.2 Reduction in other pollution parameters (gas, liquid and solid)

There is not significant impact on the reduction in other pollution parameters including gas, liquid and solid.

³ Source for emission factor: 2006 IPCC Guidelines for National Greenhouse Gas Inventories & electricity: CO2 Baseline Database for the Indian Power Sector, user guide version 12.0, May 2017 (CEA)

4.0 Project financials

4.1 Cost of project and means of finance

4.1.1 Particulars of machinery proposed for the project

The particulars of machinery proposed for the project is given in table 4.1.1.

Table 4.1.1:	Particulars	of machinery	proposed	for the project
	1 111 110 0110110	or more million j	propose.	101 110 010/000

S, No	Name of machinery	Name of manufacturer,	Advantage	Disadvantage
	(Model/ specification)	contact person		
1	Heat pipe based waste	Econotherm (UK) Ltd	design and	_
	heat recovery system	Neel Shrushti, A102, Sector -4	manufacture heat	
	for tunnel kiln	New Panvel	pipes and heat pipe	
		Navi Mumbai	heat exchangers	

4.1.2 Means of finance

The means of finance for the project is shown in table 4.1.2.

Table 4.1.2: Means of finance

S. No.	Details	100% equity	D/E- 70:30	D/E- 50:50
1	Additional (Share) Capital	20.47	6.14	10.24
2	Internal Accruals	-	-	-
3	Interest free unsecured loans	-	-	-
4	Term loan proposed (Banks/FIs)	-	14.3	10.2
5	Others	-	-	-
	Total	20.5	20.5	20.5

4.2 Financial statement (project)

4.2.1 Assumptions

The assumptions made are provided in table 4.2.1.

Table 4.2.1: Assumptions made

Details	Unit	100% equity	D/E- 70:30	D/E- 50:50
General about unit		-9		
No of working days	Days		350	
No of shifts per day	Shifts		2	
Annual operating hours	Hrs/year	8,400		
Installed production capacity	Pcs/year	5,95,000		
Production in last financial years	Pcs/year	3,85,000		
Capacity utilization factor	%		65	
Proposed investment (Project)				
Total cost of the project	Rs. (in Lakh)	20.5	20.5	20.5
Investment without interest defer credit (IDC)	Rs. (in Lakh)	20.5	20.5	20.5
Implementation time	Months	3.0	3.0	3.0

DPR – Waste heat recovery in kiln (Jagdamba Ceramic Works)

Details	Unit	100% equity	D/E- 70:30	D/E- 50:50
Interest during the implementation phase	Rs. in lakhs	-	0.1	0.1
Total investment	Rs. in lakhs	20.5	20.6	20.5
Financing pattern				
Own funds	Rs. in lakhs	20.5	6.2	10.3
Loan funds (term loan)	Rs. in lakhs	-	14.3	10.2
Loan tenure	Years	-	5.0	5.0
Moratorium period (No EMI (interest and	Months	-	3.0	3.0
principal amount))				
Total repayment period	Months	-	60.0	60.0
Interest rate	%	-	10.5	10.5
Estimation of costs				
Operation & maintenance costs	%		5.0	
Annual escalation rate of O&M	%		5.0	
Estimation of revenue				
Reduction in energy cost	Rs Lakh/year		9.3	
Total saving	Rs Lakh/year	9.3		
Straight line depreciation	%		16.21	
IT depreciation	%		80.0	
Income tax	%		33.99	
Period of cash flow analysis	Years		5.0	

4.2.2 Payback

The simple payback period on the investments made are shown in table 4.2.2.

Table 4.2.2: Payback

Details	100% equity	D/E- 70:30	D/E- 50:50
Total project cost (Rs. In lakh)	20.5	20.6	20.5
Cash flow as annual saving (Rs. In lakh/year)	9.3	9.3	9.3
O&M Expenses for first year (Rs. In lakh/year)	1.0	1.0	1.0
Net Cash flow (Rs. In lakh/year)	8.2	8.2	8.2
SPP (months)	29.8	30.0	29.9
Considered (month)	29.8	30.0	29.9

4.2.3 NPV and IRR

Table 4.2.3a:	NPV	and IRR	(100%	equity)
---------------	-----	---------	-------	---------

Particulars / years	0	1	2	3	4	5
			(Rs. in la	akhs)		
Profit after tax	-	4.92	5.96	2.27	2.06	1.98
Depreciation	-	3.32	3.32	3.32	3.32	3.32
Cash outflow	20.47	-	-	-	-	-
Net cash flow	-20.47	8.24	9.28	5.59	5.37	5.30
Discount rate % @WACC	9.30	9.30	9.30	9.30	9.30	9.30
Discount factor	1.00	0.92	0.84	0.77	0.70	0.64
Present value	-20.47	7.54	7.78	4.29	3.77	3.41
Net present value	6.31					
Simple IRR considering regular cash flow	21.96%					

DPR - Waste heat recovery in kiln (Jagdamba Ceramic Works)

Table 4.2.3b: NPV and IRR $(D/E-70:30)$						
Particulars / years	0	1	2	3	4	5
			(Rs. in la	khs)		
Profit after tax	-	4.17	5.38	1.59	1.57	1.71
Depreciation	-	3.33	3.33	3.33	3.33	3.33
Cash outflow	20.56	-	-	-	-	-
Net cash flow	-20.56	7.50	8.72	4.92	4.90	5.05
Discount rate % @ WACC	10.10	10.10	10.10	10.10	10.10	10.10
Discount factor	1.00	0.91	0.83	0.75	0.68	0.62
Present value	-20.56	6.81	7.19	3.69	3.33	3.12
Net present value	3.58					
Simple IRR considering regular cash flow	17.51%					

Table 4.2.3b: NPV and IRR (D/E- 70:30)

Table 4.2.3c: NPV and IRR (D/E- 50:50)

Particulars / years	0	1	2	3	4	5
			(Rs. in la	khs)		
Profit after tax	-	4.39	5.55	1.79	1.71	1.79
Depreciation	-	3.33	3.33	3.33	3.33	3.33
Cash outflow	20.53	-	-	-	-	-
Net cash flow	-20.53	7.71	8.88	5.11	5.04	5.12
Discount rate % @ WACC	9.90	9.90	9.90	9.90	9.90	9.90
Discount factor	1.00	0.91	0.83	0.75	0.69	0.63
Present value	-20.53	7.02	7.35	3.86	3.46	3.20
Net present value	4.35					
Simple IRR considering regular cash	18.79%					
flow						

4.3 Marketing & selling arrangement

The marketing and selling arrangements of the unit are given in table 4.3.

 Table 4.3:
 Marketing & selling arrangements

Items	Remarks
Main Markets (locations)	Pan India/UAE
Locational advantages	-
Any USP or specific market strength	-
Whether product has multiple applications	NA
Distribution channels (e.g. direct sales, retail network,	Direct sales/ Through market
distribution network)	
Marketing team details, if any.	NA

4.4 Risk analysis and mitigation

The risk analysis and mitigation for the proposed options are given in table 4.4.

Type of risk	Description	Mitigation
Technology	The equipment/technology provided by the supplier may not be of high quality which may result in underperformance.	The equipment/technology should be procured from standard/reputed vendors only.
Market /Product	Demand of the product manufactured by the unit may change resulting in lower capacity utilization.	Regular vigilance/tab on the market scenario by the SME will help in better understanding of new substitute product. The unit may modify the product line based on the emerging market trend.
Policy/ Regulatory	Changes in government regulation/policy related to pollution and taxes & duties can affect the viability of the unit.	Local industrial association may play a role in discussing these issues with the relevant governmental bodies on a regular basis, so that any concerns of the unit are brought to their notice.

Table 4.4: Risk analysis and mitigation

4.5 Sensitivity analysis

A sensitivity analysis for various scenarios which may affect the return on investment is given in table 4.5.

S. No.	Scenario	D/E ratio	Payback	NPV	IRR	DSCR	ROI
			period	(Rs	(%)		(%)
			(months)	lakh)			
1	10% increase in	100% equity	2.2	11.6	48.9	-	44.2
	estimated savings	70:30	2.2	11.2	48.3	2.1	47.0
	Ū.	50:50	2.2	11.3	48.5	0.9	46.2
2	10% reduction in	100% equity	2.7	9.3	39.3	-	43.3
	estimated savings	70:30	2.7	9.0	38.7	2.1	46.6
		50:50	2.7	9.1	38.9	0.9	45.6
3	10% rise in interest	70:30	2.4	9.9	43.4	2.1	46.8
rates	50:50	2.4	10.1	43.6	0.9	45.9	
4	10% reduction in	70:30	2.4	10.3	43.6	2.1	46.8
	interest rates	50:50	2.4	10.4	43.7	0.9	45.9

Table 4.5: Sensitivity analysis

5.0 Conclusions & recommendations

The DPR prepared for the retrofit the heat pipe based waste heat recovery system in tunnel kiln based on the performance assessment study conducted at unit and the acceptance of the unit management. The brief of selected energy conservation measures is given below.

5.1 List of energy conservation measures

The brief summary of the energy conservation measures are given in table 5.1.

S. No	Energy conservation measure	Annual energy saving NG (SCM)	Investment (Rs. Lakh)	Monetary savings (Rs. Lakh per year)	Simple payback period (Yrs)	Emission reduction (tonnes of CO ₂)
1	Heat pipe based waste heat recovery system in kiln	33,075	20.47	9.26	2.2	57.9

Table 5.1: summary of the energy conservation measures

These measures have an estimated investment of 20.47 lakh rupees and can yield a savings of 9.26 lakh rupees per year. The total annual reduction in emission by implementation of recommended measures is estimated to be 57.9 tonnes of CO₂. The financial indicators provided above in the table shows the project is financially viable and technically feasible.

5.2 Summary of the project

The summary of the project is given in table 5.2.

S. No.	Particulars	Unit	100% equity	D/E- 70:30	D/E- 50:50
1	Cost of Project	Rs. In Lakh	20.47	20.47	20.47
2	D/E Ratio	-	-	7:3	1:1
3	Project IRR	%	22.0	17.50	18.80
4	NPV	Rs. In Lakh	6.30	3.60	4.40
5	DSCR	-	-	2.10	0.90

Table 5.2: Summary of the project

5.3 Recommendations

The financial indicators provided above show the project is financially viable and technically feasible. It is recommended that the implementation of the identified the energy conservation measures may be undertaken by the unit.

6.0 Financing schemes for EE investments for MSME sector

Government of India has many schemes to provide concessional finance for EE technologies among MSMEs. Some major government schemes are summarised in table 6.1.

Name of the scheme	Brief Description and key benefits
ZED assessment and certification	Assessment process, fee and subsidy are as follows: Online (e-Platform) self-assessment: Nil fee Desk Top assessment : Rs 10,000 per SME Complete assessment : Rs 80,000 ZED rating per SME; Rs 40,000 for additional ZED defence rating; Rs 40,000 for re-rating The rating costs will include cost of Rs 10,000/- as certification cost by QCI. Subsidy for Micro, Small and Medium Enterprises are 80%, 60% and 50% respectively.
Credit Linked Capital Subsidy Scheme (CLCSS) (2000-ongoing)	15% capital subsidy of cost of eligible plant and machinery / equipment for adoption of proven technologies for approved products / sub-sectors for MSE units subject to ceiling of INR 15 lakhs
Credit Guarantee Fund Scheme for Micro and small Enterprises (in partnership with SIDBI) (2000-ongoing)	This scheme was launched by MoMSME and SIDBI to alleviate the problem of collateral security and enable micro and small scale units to easily adopt new technologies. Under the scheme, collateral free loans up to Rs 1 crore can be provided to micro and small scale units. Additionally, in the event of a failure of the SME unit which availed collateral free credit facilities to discharge its liabilities to the lender, the Guarantee Trust would guarantee the loss incurred by the lender up to 75 / 80/ 85 per cent of the credit facility.
Technology and Quality Up gradation Support to MSMEs (TEQUP) (2010- ongoing)	The benefits available to SMEs under TEQUP include – technical assistance for energy audits, preparation of DPRs and significant capital subsidy on technologies yielding an energy savings of over 15%. The scheme offers a subsidy of 25% of the project cost, subject to a maximum of Rs. 10 lakhs. TEQUP, a scheme under NMCP, focuses on the two important issues in enhancing competitiveness of the SME sector, through EE and Product Quality Certification.
Technology Upgradation Fund Scheme (TUFS) (1999-ongoing)	 Interest subsidy and /or capital subsidy for Textile and Jute Industry only. 1. To facilitate Technology Up gradation of Small Scale (SSE) units in the textile and jute industries. Key features being: Promoter's margin -15%; Subsidy - 15% available on investment in TUF compatible machinery subject to ceiling of Rs 45 lakh; Loan amount - 70% of the cost of the machinery by way of Term Loan

Table 6.1: Major government schemes

Name of the scheme	Brief Description and key benefits		
	 Interest rate: Reimbursement of 5% on the interest charged by the lending agency on a project of technology upgradation in conformity with the Scheme Cover under Credit Guarantee Fund Scheme for Micro and Small Enterprises (CGMSE) available 		
	 2. To enable technology upgradation in micro and small power looms to improve their productivity, quality of products and/ or environmental conditions 20% margin subsidy on investment in TUF compatible specified machinery subject to a ceiling of Rs 60 lakhs or Rs 1crore (whichever is applicable) on subsidy amount to each unit – released directly to the machinery manufacturer. 		
Tax incentives	 Accelerated depreciation is provided to the customers / users of the energy saving or renewable energy devises under the direct tax laws. Under indirect taxes, specific concessional rates of duty are only available to CFLs and not to all energy efficient products A further waiver of import tariffs and taxes for EE technology imports are dealt on a case to case basis, meaning higher costs for those imported technologies that are not available in the domestic markets at present. 		

Two financing schemes have been created by Bureau of Energy Efficiency (BEE) under The National Mission for Enhanced Energy Efficiency (NMEEE) for financing of energy efficiency projects - Venture Capital for Energy Efficiency (VCFEE) and Partial Risk Guarantee Fund for Energy Efficiency (PRGFEE). These funds seek to provide appropriate fiscal instruments to supplement the efforts of the government for creation of energy efficiency market. Highlights of these two schemes are provided in the table 6.2.

Table 6.2: BEE's VCFEE and PRGFEE scheme

Venture Capital for • Energy Efficiency (VCFEE) •	This fund is to provide equity capital for energy efficiency projects in Government buildings and Municipalities in the first phase. A single investment by the fund shall not exceed Rs 2 crore Fund shall provide last mile equity support to specific energy efficiency projects, limited to a maximum of 15% of total equity required, through Special Purpose Vehicle (SPV) or Rs 2 crore, whichever is less
Partial Risk • Guarantee Fund for Energy Efficiency (PRGFEE) •	 A PRGF is a risk sharing mechanism lowering the risk to the lender by substituting part of the risk of the borrower by granting guarantees ensuring repayment of part of the loan upon a default event. Guarantees a maximum 50% of the loan (only principal). In case of default, the fund will: Cover the first loss subject to maximum of 10% of the total guaranteed amount Cover the remaining default (outstanding principal) amount on

Venture Capital for Energy Efficiency (VCFEE)	 This fund is to provide equity capital for energy efficiency projects in Government buildings and Municipalities in the first phase. A single investment by the fund shall not exceed Rs 2 crore Fund shall provide last mile equity support to specific energy efficiency projects, limited to a maximum of 15% of total equity required, through Special Purpose Vehicle (SPV) or Rs 2 crore, whichever is less
	 partial basis upto the maximum guaranteed amount PFI shall take guarantee from the PRGFEE before disbursement of loan to the borrower. The Guarantee will not exceed Rs 300 lakh per project or 50% of loan amount, whichever is less. Maximum tenure of the guarantee will be 5 years from the date of issue of the guarantee

Indian Renewable Energy Development Agency (IREDA), a non-banking financial institution established by the government also extends financial assistance for setting up projects relating to new and renewable sources of energy and energy efficiency/conservation. The detailed financing guidelines for energy efficiency projects are provided in table 6.3.

Eligible companies	Private Sector Companies/ firms, Central Public Sector Undertaking (CPSU),
who can apply	State Utilities/ Discoms/ Transcos/ Gencos/ Corporations, Joint Sector Companies which are not loss making.
Minimum loan amount	• Rs. 50 lakh
Type of projects considered for	• Replacement / retrofit of selected equipment with energy efficient equipment
term loans	Modification of entire manufacturing processingRecovery of waste heat for power generation
Incentive available	 Rebate in central excise duty Rebate in interest rate on term loan
	 Rebate in prompt payment of loan instalment
Interest rate	 10.60% to 11.90% depending upon the grading of the applicant with prompt payment rebate of 15 bps if payment is made on / before due dates Interest rates are floating and would be reset on commissioning of the project or two years from the date of first disbursement. Thereafter, the rates will be reset after every two years. Rebate of 0.5% in interest rates are available for projects set up in North Eastern States, Sikkim, J&K, Islands, Estuaries. Rebates of 0.5% in interest rates are also available for projects being set up by SC/ST, Women, Ex Servicemen and Handicapped categories involving project cost of upto Rs. 75.00 lakh.
Loan	Upto 70% of the total project cost. Promoter's contribution should be Minimum 30% of the total project cost
Maximum debt	3:1

DPR - Waste heat recovery in kiln (Jagdamba Ceramic Works)

equity ratio	The project cash flow should have a minimum average Debt Service Coverage Ratio of 1.3
Maximum repayment period	12 years with moratorium of maximum 12 months
Procurement procedures	The borrower is required to follow the established market practices for procurement and shall demonstrate that the quality goods and services are being purchased at reasonable and competitive prices. Wherever the loan is sanctioned against international lines of credit such as the World Bank, Asian Development Bank, kfW, etc., the relevant procedures will have to be followed and requisite documents will have to be submitted by the borrower

Small Industries Development Bank of India (SIDBI) has several schemes and focused lines of credit for providing financial assistance for energy efficiency and cleaner production projects for SMEs. Highlights of some of the major financial assistance schemes/projects managed by SIDBI are given in table 6.4.

	Table 6.4: Major	r EE financing scl	hemes/initiatives of SIDBI	
--	------------------	--------------------	----------------------------	--

End to End Energy Efficiency (4E) Program	 Support for technical /advisory services such as: Detailed Energy Audit Support for implementation Measurement & Verification Financing terms: Terms loans upto 90% Interest rate upto 3% below normal lending rate.
TIFAC-SIDBI Revolving Fund for Technology Innovation (Srijan Scheme)	To support SMEs for up-scaling and commercialization of innovative technology based project at flexible terms and interest rate. Preference accorded to sustainable technologies / products. Soft term loan with an interest of not more than 5%.
Partial Risk Sharing Facility for Energy Efficiency (PRSF) Project (supported by World Bank)	 Sectors covered: Large industries (excluding thermal power plants) SMEs Municipalities (including street lighting) Buildings Coverage: The minimum loan amount Rs 10 lakh and maximum loan amount of Rs 15 crore per project. The extent of guarantee is 75% of the loan amount
JICA-SIDBI Financing Scheme	 The loan is used to provide SMEs with funds necessary to invest in energy-saving equipment (and some medical equipment) in the form of two-step loans through SIDBI or three-step loans through intermediary financial institutions.

	 Project uses an Energy Saving Equipment List approach Equipment/machinery with energy saving potential less than 10% is not eligible. Interest rate: As per credit rating and 1% below the normal lending rate Separate technical assistance component which is used for wetting of loan applications, holding seminars to raise awareness of energy saving among SMEs and to improve the ability of financial institutions to screen loan applications for energy-saving efforts
KfW-SIDBI Financing Scheme	 Coverage a) SMEs for energy efficiency projects b) SMEs and clusters for cleaner production and emission reduction measures, waste management and Common Effluent Treatment Plant (CETP) facilities Interest rate As per credit rating and 1% below the normal lending rate Eligible criteria 3 t CO₂ emission reduction per year per lakh invested List of eligible equipment/technology and potential suppliers developed for guidance

State Bank of India (SBI) has been provided a green line of credit by Japan Bank for International Cooperation (JBIC) for financing of energy efficiency investments. Highlights of the line of credit are given in table 6.5.

Table 6.5: JBIC-SBI Green Line

Key Features

- Amount : USD 90 million
- Repayment Schedule: First repayment on May 30, 2017 and final repayment date May 30, 2025 (equal instalment)

Eligibility Criteria

- Projects contributing to preservation of global environment, i.e. significant reduction of GHG emissions
- Acceptance of JBIC-MRV ('J-MRV") by the project proponent in terms of the numerical effect of the environment preservation. To ensure effective GHG reduction emissions in Green financed projects, JBIC reviews such effects through simple and practical Measurement Reporting Verification (MRV) process both in (a) prior estimation and (b) ex-post monitoring.
- Procurement in line with the "Guidelines for Procurement under Untied Loans by Japan Bank for International Cooperation"

Canara bank has a dedicated scheme for financing EE investment among SME sector as mentioned in table 6.6.

Table 6.6: (Canara I	bank	scheme	of EE	SME loans
--------------	----------	------	--------	-------	-----------

Purpose	For acquiring/adopting energy conservation/savings equipment/					
	measures by SMEs					
Eligibility	Units under Small and Medium Enterprises					
	Cost of energy for the unit should constitute not less than 20% of the total					
	cost of production					
	Unit should possess energy audit report issued by an approved energy					
	Consultant/Auditor.					
	Borrowal a/cs-ASCC code S1 or S2 during previous review.					
	Current account holders having dealings exclusively with us satisfactorily					
	for a period of last one year					
Maximum loan	Maximum Rs 100 lakhs in the form of term loan					
Security	Prime: Assets created out of loan					
	Collateral: Upto Rs.5 lakhs - NIL					
	Above Rs.5 lakhs, as determined by the bank					
Repayment	Maximum 5-7 years including moratorium of 6 months					
Guarantee cover	Cover available under CGMSE of CGTMSE available for eligible loans					
Margin	10% of the project cost					
Rate of interest	1% less than the applicable rate					
Upfront fee	1% of the loan					
Insurance cover	Assets acquired and charged as security to Bank to be insured					
Special offer, if any	Grants : Bank provides 25% of the cost of Energy Audit / Consultancy					
	charges with a maximum of Rs 25000/- to the first 100 units on a first come					
	first served basis which is in addition to the grant of Rs 25000/- being					
	provided by IREDA(First 100 units)					

Among the private sector banks in India, Yes Bank is also active in financing of renewable energy and energy efficiency projects. The bank has an MOU with SIDBI for providing funding for EE through PRSF.

Most commercial banks charge interest rate between from 11% to 13% from MSMEs depending upon general criteria such as credit ratings, references, past lending record, balance sheet for last 3 years and so on. Interest rebate is offered for a few customers whose collateral value is around 125% of the loan amount. Further 0.5% concession in interest rate was offered to women entrepreneurs.

Annexures

Annexure 1: Budgetary offers / quotations

Quotation – 1: Econotherm

Heat pipe technical details / performance

Possible lengths	2m [up to 10m]			
Outer diameter	28mm [15, 22, 38mm]			
Wall thickness	2.5mm [3.5mm]			
Construction materials	Carbon steel and stainless steel, aluminium, copper			
Fins	According to application: 5-11mm height, 3-6mm pitc			
Working fluids	Water [Acetone, Ammonia, Dowtherm, Naphthalene]			
Maximum allowable pressure	400 bar (burst pressure is ~800 bar)			
Normal working pressure	15-30 bar (steam tables, according to WPT)			
Weight - smooth - finned	 1.8 kg/m pipe only. 2.5kg/m carcass weight 3.1 kg/m " 4.3kg/m " 			
Joint types	Gravity, Push fit, Compression			
DUTY RANGES (1 metre, 28mm diameter, carbon steel pipe, with H2O working fluid)	500W-3000W per meter length of pipe, depending on application, ΔT and finning profile [= 5kW-30kW/m2] [Flat panel duty = 70-80kw @ 350C surface]			

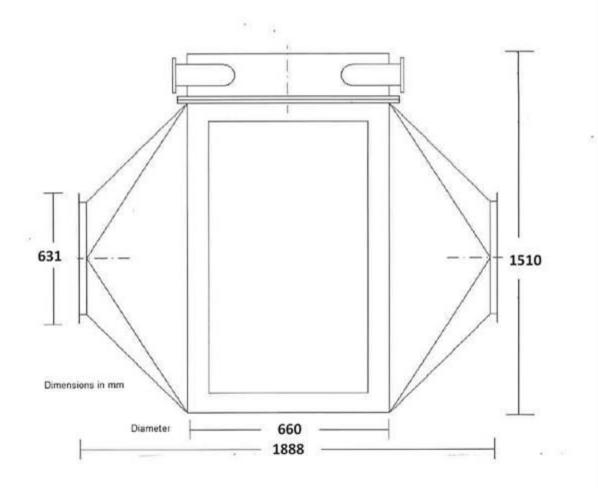
4115 iate company of therm Formal interaction at TERI office to explore heat pipe oppurtunities - IBM Notes - 0 X File Edit View Create Actions Tools Window Help Х 🚯 Discover 🗴 Replication and Sync x 🛛 🖾 Pawan Tiwari - Mail x 🖾 Archive a_ptiwar - Mail x 🖏 Replication and Sync x 🔯 Formal interaction at TERI office to... x 🦏 Sametime Conta... ≡ New 🔻 Reply 🛪 Reply to All 🖛 Forward 🕶 🖿 🖛 👘 Display 🗨 📿 🕶 More 🖛 Find a pr <u>4</u>-Formal interaction at TERI office to explore heat pipe oppurtunities Chander Kamra to: pawan.tiwari@teri.res.in 04-05-2018 11:10 wan Tiw Set my ...tion... ■
♥ I am... Cc: "chhn.rupesh@gmail.com", "svmradhe@yahoo.com", "cso@radhegroup.com", Mark Boocock, Andrew Holgate Show Details - <u>1</u> Dear Mr Pawan Tiwari, Work 1/1 Following my discussion had with you over the phone today, I would like to introduce myself and Econotherm UK to you. Pawan Tiwari A brief introduction Econotherm (more information can be found at our website www.econotherm.eu) Econotherm UK Ltd is a well-established UK company specialising in industrial waste heat recovery and recycling technology based on thermal superconductor heat pipes. Thanks a lot for your remarkable initiative for energy saving through TERI. Under your profound guidance and mentorship, I am sure that Industrial India will save billions of rupees in energy saving which will contribute to our Nation's growth. Your recent address at the RAJKOT - TERI event(Ceramics Cluster) has further given us many insights in the field of energy saving. I would request you to recall your Discussion with Mr Javia and Mr Rupesh from Radhe Renewable Energy Pvt LTD at the event and I appreciate your interest in case studies and projects done by Econotherm. We manufacture heat pipes and heat pipe heat exchangers for use in diverse areas of industrial waste heat recovery and focus mainly on difficult to recover waste heat. It would be most appreciated if you would arrange a formal meeting with you at Lodhi Road Office on 17th May (At around 16:15 Hrs) to explore the possible opportunities for us to support you energy conservation ambitions. I would request you to give us an opportunity for the detailed study and analysis and we can move a step further towards your initiative of energy saving. Day-At-A-Glance Ξ 🏥 My Widgets Ξ Regards, Feeds Ξ Chander Kamra Business Development Manager Asia Econotherm (UK) Ltd 🎭 Chat Rooms ≡ ••• 4 14:37 A X W

the Irrecoverable

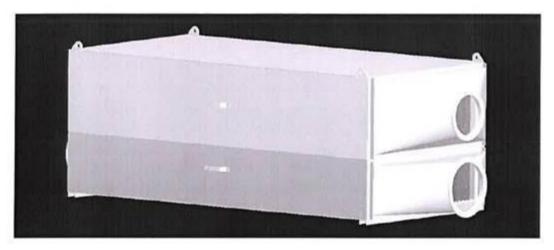
Reference ID: ECT/2017-18/74

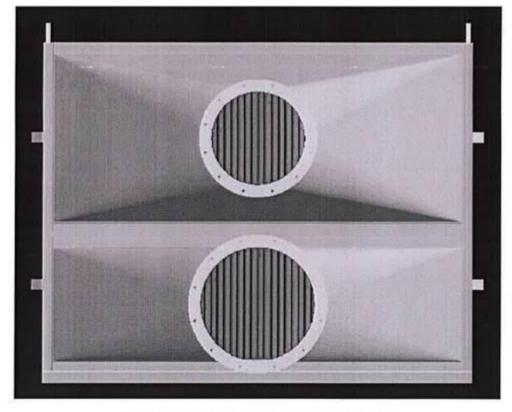
Date: 17/06/2018

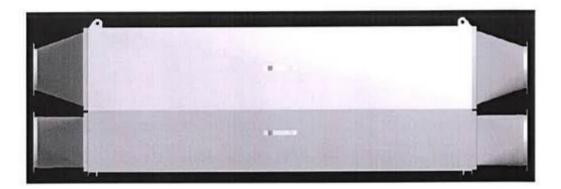
Subject: Techno-Commercial Offer for WHR system


Dear Sir,

With reference to you enquiry, please find offer below


Client	Supplied	Design Parameters		
Exhaust inlet temperature [°C]		250		
Air inlet temperature [°C]		25		
Fuel Type		Natural Gas		
As	sumed De	sign Parameters		
Exhaust (Source) specific heat [Kca	l/kg °C]	0.257320317		
Air (Sink) specific heat [Kcal/kg. °C]		0.24028		_
Exchanger Sp	ecification	n (Subject To Final De	esign)	-
Heat Pipe Outline Specification -		Heat source - Exhaust		
		Heat sink - Air		
Length [mm]	1,480	Estimated Unit Dimensions		
Outside diameter [mm]	28	Height [mm]	1,510	
Pipe wall thickness [mm]	2	Width [mm]	660	
Exhaust outlet temperature [°C]	135	Length [mm]	1,219	
Air outlet temperature [oC]	150	Weight [Kg] 1,203		_
	Price	(Offer)		
Description		Unit Price Total		
1) Unit cost gas to gas		- £ 20,000		
2) Miscellaneous cost		-	£ 3,000	
Total C	ost		£ 23,000	


Casing Specifications Materials			Heat Pipe Detailed Specification Materials				
							Primary Side (Exhau
Secondary Side (Wat	ter) Carbon	steel	Evaporation Section Fin			N/A	
Separation Pl	ate Carbon	steel	Condensation Section Fin		n Ca	Carbon steel	
Heat Pipe Wor	king Fluid			Dimens	sions		
Dowtherm			Evaporation Length [m]		[m]	tba	
Heat Pipe Sealing Specification			Condensation Length [m]			tba	
Туре	Grafoil Compression		Evaporation Fin Height [m]			N/A	
Gasket Material	Round 28mm		Evaporation Fin Pitch [m]			N/A	
Design Pressure	N/A		Condensation Fin Height [m]			tba	
Design Temperature	N/A		Condensation Fin Pitch [m]		[m]	tba	
	C	Design Co	ondition				
Primary Side			Secondary Side				
Pressure [Bar] 0.1	Temp [°C]	250	Pressure [Bar]	0.1	Temp [°	C] 150	



General arrangement drawing of heat exchanger

General arrangement drawing of heat exchanger

Approximate Heat Pipe Weight: 3.6kg Approximate Casing Weight: 3000kg Approximate Surface Area: 30.75 Sqm

Annexure 2: Instruments used

Instruments	Model/ Make	Application	Accuracy
Power analysers	Fluke: 435, Fluke: 43B,	Electrical Parameters Harmonics analysis, power logging	± 0.5%
Flue gas analyser	Testo: 330-2LL	Flue gas O ₂ , CO, CO ₂ & Temperature	± 0.1vol%, 1ppm, 1ppm, 0.1°C
Thermal imager	875-2/Testo	Surface Temperature & Image	± 2%
Digital Temperature indicator	Comark: N1001, Testo: 925	Temperature	±1%
Anemometer	Testo: 425, Airflow: TA45	Air Velocity	± (0.03 m/s +5% of mv)
Differential pressure meter	Testo: 512	Air pressure	0.5% full-scale value / ±1 digit
Temperature data logger	175-T3/Testo	Temperature	± 0.5%

